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1.  Introduction 

The Atmospheric Infrared Sounder (AIRS) onboard NASA’s Aqua satellite has been 

delivering measurements of atmospheric variables including temperature and humidity 

since its launch in 2002. Since 2016, the AIRS Project has delivered weekly application 

data products for the United States Drought Monitor (USDM), which is a drought 

monitoring system that takes into account drought indicators and information from a 

variety of sources to create standardized drought maps that are widely used by decision 

makers, policy experts, and researchers. This technical report documents the 

methodology and context of the AIRS drought products for the USDM.  

 

The value of satellite data for drought monitoring and the literature relevant to AIRS and 

drought are introduced in the following subsections. In Section 2, the methodology to 

calculate drought indices is described and in Section 3, use cases are provided giving 

insight into the capability of AIRS data in identifying the precursor conditions of 

droughts. Section 4 covers the context of the collaboration between the AIRS Project 

and USDM authors and contains detailed descriptions of the AIRS drought products. 

Section 5 includes discussion of additional data products relevant for drought, the 

validation of the AIRS data products, and potential continuity of the drought products 

after the lifetime of the AIRS Mission.   

1.1. Value of satellite data for drought monitoring 

Droughts are catastrophic phenomena, which impact a wide variety of sectors including 

agriculture, vegetation health, and water resource management. The economic impacts 

of droughts are detrimental, with an estimated average annual economic loss of nearly 

six to eight billion dollars in the US, concentrated in agriculture (NCDC, 2019). Large scale 

droughts may result in extensive and severe impacts on food security (Haile, 2005). A 

major drought can reduce crop yields, lead farmers to cut back planted or harvested 

acreage, reduce livestock productivity, and increase costs of production inputs such as 

animal feed or irrigation water (USDA, 2013). According to the United Nations Convention 

to Combat Desertification (UNCCD), Over 1.4 billion people were affected by drought in 

the period of 2000 to 2019 and more than 10 million people lost their lives due to major 

drought events in the past century (UNCCD, 2022). Furthermore, droughts are the most 

destructive and costliest of natural disasters in developing regions. Eighty three percent 

of all economic losses from droughts in the developing countries were absorbed by 

agriculture between 2005 and 2015, with a price tag of $29 billion. While droughts occur 

globally, Africa as well as Latin America and the Caribbean are hit most by droughts, 

causing crop and livestock losses of $10.7 and $13 billion in those regions, respectively, 

between 2005 and 2015 (FAO, 2018). 
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Drought monitoring is challenging due to the complex nature of drought events. Droughts 

lack a single universal definition, which makes the drought monitoring and drought 

characterization difficult (Mishra & Singh, 2010). Since there is no single definition of 

droughts, they can be described in four main categories: 

● meteorological drought is often described as a deficit in precipitation 

● agricultural drought is expressed as a deficit in soil moisture 

● hydrological drought typically refers to below average surface or sub-surface water 

● socioeconomic drought pertains to water supply and social response (Wilhite, 

2005)  

Given that droughts can be described relative to different variables, numerous indices 

based on precipitation, soil moisture, surface and groundwater, and vegetation health 

have been developed based on one or more climatic variables (Wilhite, 2000). Some 

examples include Standardized Precipitation Index (SPI, McKee et al., 1993), Palmer 

Drought Severity Index (PDSI, Wells et al., 2004), Evaporative Stress Index (ESI, 

Anderson et al., 2007), Standardized Precipitation Evapotranspiration Index (SPEI, 

Vicente-Serrano et al., 2010), Standardized Vegetation Index (SVI, Peters et al., 2002) 

and Multivariate Standardized Drought Index (MSDI, Hao and AghaKouchak, 2013). 

Traditionally, droughts have been monitored by ground-based observation. However, 

limitations in ground-based observations including uneven distribution of ground-based 

observations, temporal and spatial inconsistencies, and lack of observations in remote 

regions have made satellite observations a great asset for drought monitoring. The 

advantages of remote sensing data in drought monitoring are the large spatial coverage 

and high temporal frequency of the observations, which leads to a better understanding 

of the spatial extent of drought and its duration, and improved detection of the onset of 

drought and its intensity (AghaKouchak et al., 2015). For example, Land Surface 

Temperature (LST) observations from Thermal Infrared (TIR) satellite imagery have been 

widely used for drought monitoring. Some of the TIR-based indices are Temperature 

Conditions Index (TCI; Kogan, 1995)), Vegetation Health Index (VHI; Kogan, 1995) and 

Evaporative Stress Index (ESI, Anderson et al., 2007). 

1.2. Drought early detection 

To mitigate the impact of drought on human life and environment and to ensure the 

production of adequate food to avoid food crises, developing early warning and mitigation 

strategies is critical. Drought early onset detection is fundamental to local and regional 

mitigation plans, especially in the agriculture and water resources sectors. A water 

manager may need drought information months in advance for water resource planning, 

while for a farmer even a few weeks of lead time is game changing. Early detection, even 
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by a few weeks/months, allows farmers to take adaptive measures that include 

purchasing less fertilizer and increasing insurance coverage, especially before or early in 

the growing season.  

1.3. AIRS publications on drought 

Recent studies indicate that drought indicators based on air Relative Humidity (RH), air 

Temperature (T), and air Vapor Pressure Deficit (VPD), derived from the Atmospheric 

Infrared Sounder (AIRS) mission can detect the onset of droughts earlier than other 

drought indicators, specifically SPI which is widely used for drought onset detection. 

Relative humidity is an important climate variable defined as the ratio of air vapor pressure 

to the saturated vapor pressure. Precipitation and relative humidity are related to each 

other in the sense that precipitation is not expected at low relative humidity. Farahmand 

et al. (2015) showed that Standardized Relative Humidity Index (SRHI) can detect 

drought signals earlier than the precipitation-based SPI. Specifically, they show the 

probability of drought onset (DO) detection (i.e., fraction of detected drought) using SRHI 

when DOSRHI ≤ DOSPI ranges globally between 0.5 to 0.8, with the global average being 

approximately 0.6 (i.e., 60% of all events). This study also indicates that the mean lead 

time of SRHI relative to SPI ranges between 1 to 3 months with the global average being 

approximately 1.9 months. The study further shows that SRHI has been able to 

successfully detect the early signs of the 2012 Midwest drought, the 2011 Texas drought, 

and the 2010 Russian Drought. 

In another study, Standardized Vapor Pressure Deficit (SVPD) and Standardized 

Temperature (ST) indicators were shown to detect droughts earlier or at the same time 

as SPI with an average relative lead time of 1.5 months (a range of a few weeks to 2 

months) and in 60 percent of events in the Contiguous United States (CONUS) (Behrangi 

et al., 2016). Vapor Pressure Deficit (VPD), defined as the difference between vapor 

pressure and saturated vapor pressure, is an important climate variable, which includes 

both elements of temperature and relative humidity. VPD is a major controlling factor of 

evapotranspiration demand. With increasing air aridity, VPD increases, indicating greater 

evaporation stresses (Behrangi et al., 2015; Kucera, 1954). 

Behrangi et al. (2015) found that the combination of high temperatures and low 

atmospheric humidity, which was expressed by high VPD, were important factors in the 

development and evolution of both the 2011 and 2012 droughts in the South central and 

Corn Belt regions of the United States. The SVPD indicated increases during the 

formation and rapid intensification in drought conditions of the 2011 and 2012 drought 
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events, suggesting that remotely sensed VPD holds considerable potential to offer new 

atmospheric insights for drought early warning and assessment. 

2.  Methodology for calculating the RH, T, VPD 

drought indices 

Standardized drought indicators based on RH, T, and VPD can be derived using either a 

parametric or a non-parametric approach. The non-parametric (empirical) approach helps 

avoid assumptions about the underlying distribution functions (Farahmand and 

AghaKouchak, 2015). In this section, the methodology for deriving SVPD is explained. 

SRHI and ST indicators are calculated using a similar methodology. To derive SVPD, 

VPD should first be calculated. VPD is defined as the difference between vapor pressure 

(e) and saturated vapor pressure (es) and calculated as: 

 

(Equation 1) 

where c1=0.611 kPa, c2=17.5, c3= 240.978 °C, Td: dew point temperature (°C), T: air 

temperature (°C). 

Td is calculated from T and RH: 

   

(Equation 2) 

 

(Equation 3) 

where b = 17.625 and c =243.04 °C. 
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The empirical SVPD can then be derived by first calculating the marginal probabilities of 

VPD (Gringorten, 1963): 

               

(Equation 4)                               

Here n is the sample size, i denotes the rank of non-zero VPD data from the smallest, 

and p(xi) is the corresponding empirical marginal probability. SVPD is then derived using 

the following equation: 

               

(Equation 5)                                             

where 𝝓 is the standard normal distribution function, and p is probability derived from 

Equation 4. SRHI and ST can be calculated following a similar methodology. 

To facilitate comparing these indices with other available drought indicators such as SPI, 

the signs of SVPD and ST are reversed so that negative SVPD and ST indicates above 

average vapor pressure deficit and temperature respectively and is proposed as a 

measure of dryness. Positive SVPD and ST indicates below average vapor pressure 

deficit and temperature and is proposed as a measure of wetness (Behrangi et al., 2015, 

2016). One attractive feature of SVPD, SRHI, and ST is that, similar to SPI, they can be 

derived for different timescales (e.g., 1-, 3-, 6-month SVPD). For further information about 

deriving SRHI, SVPD, and ST indices, please refer to Behrangi et al. (2015, 2016) and 

Farahmand et al. (2015).  
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3.  Use cases  

In this section, AIRS drought indicators are compared to MERRA2 (Modern-Era 

Retrospective analysis for Research and Applications) SPI and SSI (Standardized Soil 

Moisture Index) for drought onset detection in three case studies (Farahmand et al., 2023) 

(Figure 1). MERRA2 provides re-analysis precipitation and soil moisture data at the 

resolution of 0.625° longitude by 0.5° latitude since 1980 (Gelaro et al. 2017). We use the 

moderate drought threshold of 20th percentile and various smoothing scales depending 

on the type of drought. For simplicity, we only showcase AIRS VPD drought indicator 

(SVPD) results in this report. 

3.1. Use Case 1: 2012 Midwest Flash Drought 

Figure 1a shows the development of the 2012 Midwestern Flash Drought based on two-

month indicators of SVPD2, SPI2, and SSI2. The blue line indicates SVPD2, the red line 

indicates SPI2, and the yellow line indicates SSI2. As indicated, VPD showed the onset 

of drought several months earlier than precipitation and soil moisture. Precipitation 

showed the drought signals in May 2012. Soil Moisture did not show drought conditions 

until June 2012. For this event, AIRS VPD data picked up a drought signal that might 

otherwise have been overlooked by precipitation and soil moisture. 

3.2. Use Case 2: 2019 Southeast Flash Drought 

In Figure 1b, the development of the 2019 Southeastern Flash Drought is shown. This 

event developed rapidly during Fall 2019. Due to rapid development, we assessed the 

drought development using 1-month drought indicators of VPD (SVPD1), precipitation 

(SPI1), and soil moisture (SSI1). As shown, the drought onset was simultaneously 

captured by all three indicators of SVPD, SPI, and SSI.  In this case study of a very abrupt 

flash drought, the SVPD1, SPI1, and SSI1 signals all began at the same time. 

3.3. Use Case 3: 2020-2022 Western US Drought 

Figure 1c shows the development of the 2020-2022 Western U.S. Drought. To investigate 

this event, we looked at the 3-month drought indicators (SVPD3, SPI3, and SSI3), as this 

event was not considered a flash drought. As shown, the drought onset was 

simultaneously captured by all indicators. Although this event was not a flash drought, 

AIRS-based drought indicators along with drought indicators of precipitation and soil 

moisture were able to detect the drought onset. The results of these case studies have 

provided insight into the capability of AIRS data in identifying the precursor conditions of 

droughts, particularly in the case of flash droughts. 
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Figure 1. Assessment of drought onset for three case studies of a) 2012 Midwestern flash 

drought; 2) 2019 Southeastern flash drought; 3) 2020-2022 Western US drought. SVPD 

indicators are based on AIRS data.  SPI and SSI are precipitation and soil moisture 

indicators, respectively, based on MERRA reanalyses.  The appended numbers in the 

legend indicate averaging times in months. 
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4. AIRS and USDM 

4.1. History of AIRS and USDM 

The United States Drought Monitor (USDM) framework is a drought monitoring system 

that considers several variables including short- and long-term drought indicators, 

vegetation information, hydrologic indices, and remote-sensing information, along with 

the ground validation to create weekly drought maps. The USDM authors combine the 

objective drought indicators and the subjective inputs of local and regional experts such 

as state climatologists, National Weather Service staff, Extension agents, and 

hydrologists to synthesize the best available data and manually create weekly drought 

depictions for the United States. The USDM maps are generally at the spatial resolution 

of counties. The USDM maps are available since 1999 and show areas of the United 

States under drought in six classifications: No drought, D0 (Abnormally Dry), D1 

(Moderate Drought), D2 (Severe Drought), D3 (Extreme Drought), and D4 (Exceptional 

Drought) (Svoboda et al. 2002).  

 

Policymakers routinely use the USDM to help determine drought relief allocations and 

declarations of drought. The integrated approach makes the USDM one of the most 

holistic measures of drought conditions across the United States, Puerto Rico, U.S. Virgin 

Islands, and U.S. Affiliated Pacific Islands. In addition, USDM maps are widely used in a 

variety of ways including academic research, informing decision makers and policy 

experts, aiding in the declaration of drought disaster areas, and delivering billions of 

dollars in economic assistance to agricultural communities through the Livestock Forage 

Disaster Program (LFP). 

 

Given the value of AIRS drought products in detecting drought onset, the AIRS drought 

team initiated a conversation with the National Drought Mitigation Center (NDMC) in early 

2016 to explore the possibility of integrating AIRS drought products into the USDM 

process. The AIRS drought team later visited the NDMC at the University of Nebraska 

Lincoln (UNL) in the Spring of 2016 and showcased the value of AIRS near surface RH, 

T, and VPD drought products in detecting drought onset. NDMC agreed to evaluate and 

potentially utilize AIRS drought products in generating weekly drought maps.  

4.2. AIRS Drought Products for USDM 

Each week (since mid-2017), the AIRS Project has made available for download by the 

USDM community a standard set of CONUS daytime drought products for three key 

parameters: Surface Relative Humidity (RH), Surface Air Temperature (T), and Surface 

Vapor Pressure Deficit (VPD). Each of the AIRS RH, T, and VPD drought products are 
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binned into four timescales of 7, 14, 28, and 56-day averages resulting in a total of 12 

drought products that can be utilized to help with drought assessment.  These data points 

are at the spatial resolution of half-degree. The inputs for generating drought maps are 

Level 2 AIRS observations (50 km resolution at nadir) made from AIRS IR-Only 

processing rules which do not incorporate observations from AIRS’ sister instrument, the 

Advanced Microwave Sounder Unit-A. All twelve drought products are formatted 

specifically for use by USDM authors including a specific type of projection, data format, 

and color bar. All data have been staged at the publicly accessible NASA JPL server and 

pulled by NDMC every Monday since April 2017. In 2020, the AIRS project added an 

“integrity” check before delivering all products to ensure maps follow the requirements set 

by USDM. It is important to note the AIRS drought products are derived from direct 

satellite observations, which add another remotely sensed tool to the suite of satellite 

products being utilized in the weekly USDM assessment. 

4.3. Methodology for USDM drought indices 

All drought products are derived from daily AIRS Version 7 Level 2 Hierarchical Data 

Format (HDF) data files. Level 2 data are organized according to a satellite swath path at 

50 km resolution but are not gridded. The first two parameters exist as data fields in the 

delivered data products: 

1. Surface Air Temperature (TSurfAir) 

2. Surface Relative Humidity (RelHumSurf) 

A calculation is then performed to generate surface dew point temperature (Td) from 

TSurfAir and RelHumSurf using equations 2 and 3.  

3. Vapor Pressure Deficit (VPD) 

Td enables the calculation of the third parameter Vapor Pressure Deficit (VPD) from 

TSurfAir and Td using equation 1.  

The AIRS Level 2 data extracted are only from ascending node orbital ground tracks 

which, for the latitude range of the continental United States (CONUS), always 

correspond to daylight conditions. 

4.3.1. Data Quality Constraints 

The AIRS Version 7 Level 2 observation set provides several types of quality control (QC) 

parameters associated with each vertical atmospheric profile. Each of these QC 
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parameters is assigned a value as follows: 0= best; 1=Good; 2=Suspect. The following 

seven QC parameters are extracted in the process of creating the AIRS drought products: 

1.       TSurfAir_QC:  Surface Air Temperature 

2.       RelHumSurf_QC:  Surface Relative Humidity Quality Control 

3.       CldFrcTota_QC: Total Cloud Fraction Quality Control 

4.       PSurfStd_QC:  Surface Skin Pressure Quality Control 

5.       TSurfStd_QC: Surface Skin Temperature Quality Control 

6.       PTropopause_QC: Tropopause Pressure Quality Control 

7.       T_Tropopause_QC: Tropopause Temperature Quality Control 

As originally implemented, the AIRS drought products would exclude any Level 2 

atmospheric profile in which any of the above seven QC parameters had a value of “2” 

(suspect).  However, a follow-up analysis revealed that a significant number of profiles 

were being excluded for the reason of just one QC Indicator; namely TSurfStd_QC. 

Further studies revealed that the evaluation of TSurfStd_QC included a more rigorous 

convergence criteria which was more suited to an ocean surface, where the emissivity 

generally has less uncertainty than over land. As a result, the current AIRS drought 

product no longer includes TSurfStd_QC as a disqualifying parameter. 

4.3.2. Data Aggregation Approach 

After applying the above (six-parameter) QC filtering tests, the remaining profiles for each 

daily data set (ascending node/daylight conditions only) are averaged into a latitude-

longitude box measuring one-half degree on a side. This one-half-degree box then 

becomes the basic unit for subsequent drought parameter calculation for TSurfAir, 

RelHumSurf and VPD. 

4.3.3. Specific calculation of the percentile 

The procedure used to calculate percentile ranks over a given time scale is illustrated 

below by examining a specific example for the 7-day average Surface Air Temperature 

for June 27, 2021.  

To derive drought conditions, we calculate the percentile rank of the most recent 7, 14, 

28, and 56-day periods for these parameters, within the context of those same calendar 

date ranges from the AIRS science data record going back to September 1, 2002. To that 
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end, the Gringorten method (Equation 4) is applied (Farahmand et al. 2015; Behrangi et 

al. 2016). Let’s assume we would like to derive AIRS Surface Air Temperature (TSurfAir) 

percentiles for the 7-day period ending on June 27, 2021. The target period should be 

compared against the data collection of the same time period from the years of 2003, 

2004, 2005 … up to and including 2021. 

Note that this comparison only represents a set of 19 data points (i.e., the same 7-day 

averages from 19 consecutive years). To enable a more realistic calculation of percentile, 

(i.e. about 100 data points), it is necessary to add additional data points to the background 

data set, even if not all of these could be independent of each other. 

The remainder of the data set is composed of seven additional sliding date windows from 

each of the reference years. For example, the 2003-2021 data collection contains the 

following 7-day periods for which averaged TSurfAir values are obtained, for a total of 

152 data points [19 years x 8 seven-day averages]: 

June 21- 27, June 20-26, June 19-25, June 18-24, June 17-23, June 16-22, June 15-21, 

June 14-20 [2021] 

June 21- 27, June 20-26, June 19-25, June 18-24, June 17-23, June 16-22, June 15-21, 

June 14-20 [2020] 

June 21- 27, June 20-26, June 19-25, June 18-24, June 17-23, June 16-22, June 15-21, 

June 14-20 [2019] 

 …..                                                                                 

June 21- 27, June 20-26, June 19-25, June 18-24, June 17-23, June 16-22, June 15-21, 

June 14-20 [2004] 

June 21- 27, June 20-26, June 19-25, June 18-24, June 17-23, June 16-22, June 15-21, 

June 14-20 [2003] 

The result is a large, pseudo-independent data set that reveals changes to 7-day 

averages on a smaller time scale (the sliding data window). Therefore, the percentile 

calculation of TSurfAir in the 7-day drought period is the comparison of the 7-day average 

value (June 21-27, 2021) against the data set of all the above data points (152 7-day 

periods, 2003-2021). 

A similar approach is used for deriving drought indicators of 14-day, 28-day and 56-day 

time scales.  
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4.4. Sample USDM drought product  

For each drought parameter and each of the four date range categories, two GeoTiff data 

files are produced. The first GeoTiff shows for each half-degree lat/lon box its ranking (0 

– 100) in which the lower values represent stronger drought conditions. The second 

GeoTiff shows for each half-degree lat/lon box an RGB triplet value (0-255) that translates 

the percentile rank into a specific color, as shown in Figures 2-4. The final integrated 

USDM drought map highlights AIRS data from the following drought regimes: 

D0: Abnormally dry (yellow) 

D1: Moderate drought (tan) 

D2: Severe drought (orange) 

D3: Extreme drought (red) 

D4: Exceptional drought (brown) 

Specifically, Figures 2-4 show the RGB rendering of the drought percentile ranking, for 

the 7-day period ending June 29, 2021, for the Surface Air Temperature, Surface Relative 

Humidity and Vapor Pressure Deficit, against a climatology based on that same calendar 

date range from each year going back to June 2003, as described above in Secion 4.3.3. 

White regions are within historical norms (a wide range of percentile values), blue areas 

are cooler and wetter than normal, and black squares represent data that has been 

excluded by a comprehensive set of AIRS quality control (QC) parameters. All large water 

bodies including The Great Lakes and The Great Salt Lake are also excluded from 

analysis and are shown as black squares. 

In Figure 2 (Surface Air Temperature), note that even in the context of a 19-year 

climatology, a well-publicized heat wave in the Pacific Northwest ranked in the upper 1 

percent (brown) of surface air temperatures. Figures 3 and 4 illustrate similar anomalous 

conditions from this same 7-day period in 2021 for Surface Relative Humidity and Vapor 

Pressure Deficit respectively. In particular, the VPD plot seems to have captured the 

drought signal of both surface temperature and relative humidity.  
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Figure 2. Anomaly plot of 7-day-averaged CONUS Surface Air Temperature for June 23-

29, 2021. 

 

 

Figure 3. Anomaly plot of 7-day-averaged CONUS Surface Relative Humidity for June 

23-29, 2021. 

 



 15 

  

Figure 4. Anomaly plot of 7-day-averaged CONUS Vapor Pressure Deficit for June 23-

29, 2021. 

Following from the description above, the AIRS drought products released each 

Monday consist of 24 data products: A pair of GeoTiff files (percentile rank and RGB 

color codes) for the three drought parameters (Surface Air Temperature, Surface 

Relative Humidity, and Vapor Pressure Deficit) as they are historically ranked over 

four time-intervals ending the same date as previous 7, 14, 28 and 56-day periods). 

These GeoTiff files follow the filename convention illustrated by the following 

example for the June 14, 2021: 

RelHumSurfPctile_conus_Asc_IROnly_14dwin_20210614.tif  

RelHumSurfPctile_3drgb_conus_Asc_IROnly_14dwin_20210614.tif 

RelHumSurfPctile_conus_Asc_IROnly_28dwin_20210614.tif  

RelHumSurfPctile_3drgb_conus_Asc_IROnly_28dwin_20210614.tif 

RelHumSurfPctile_conus_Asc_IROnly_56dwin_20210614.tif  

RelHumSurfPctile_3drgb_conus_Asc_IROnly_56dwin_20210614.tif 

RelHumSurfPctile_conus_Asc_IROnly_7dwin_20210614.tif   

RelHumSurfPctile_3drgb_conus_Asc_IROnly_7dwin_20210614.tif 
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VPDPctile_conus_Asc_IROnly_14dwin_20210614.tif  

VPDPctile_3drgb_conus_Asc_IROnly_14dwin_20210614.tif 

VPDPctile_conus_Asc_IROnly_28dwin_20210614.tif  

VPDPctile_3drgb_conus_Asc_IROnly_28dwin_20210614.tif 

VPDPctile_conus_Asc_IROnly_56dwin_20210614.tif  

VPDPctile_3drgb_conus_Asc_IROnly_56dwin_20210614.tif 

VPDPctile_conus_Asc_IROnly_7dwin_20210614.tif   

VPDPctile_3drgb_conus_Asc_IROnly_7dwin_20210614.tif 

TSurfAirPctile_conus_Asc_IROnly_14dwin_20210614.tif  

TSurfAirPctile_3drgb_conus_Asc_IROnly_14dwin_20210614.tif 

TSurfAirPctile_conus_Asc_IROnly_28dwin_20210614.tif  

TSurfAir_Pctile_3drgb_conus_Asc_IROnly_28dwin_20210614.tif 

TSurfAirPctile_conus_Asc_IROnly_56dwin_20210614.tif  

TSurfAirPctile_3drgb_conus_Asc_IROnly_56dwin_20210614.tif 

TSurfAirPctile_conus_Asc_IROnly_7dwin_20210614.tif   

TSurfAirPctile_3drgb_conus_Asc_IROnly_7dwin_20210614.tif 
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5.  AIRS Data, Validation and Continuity 

5.1. Validation 

AIRS drought products for near-surface temperature, relative humidity and VPD are 

delivered weekly to the USDM (see Section 2 and 4). The AIRS drought products are 

derived from data products that are validated as part of the general AIRS data validation 

strategy. AIRS processing software is updated every three to five years and the entire 

mission data set is reprocessed using the new version. All key variables are validated 

and compared with independent datasets such as from ground-based stations, other 

satellites and reanalysis datasets. Results are published in validation and testing reports. 

The AIRS Level 2 near-surface air temperature and relative humidity data that is used to 

produce the AIRS drought products released to the USDM are validated as part of this 

process.  

The latest test report published with the release of AIRS Version 7 (Yue et al., 2020) 

includes analysis of temperature, relative humidity, and VPD, specifically in the context 

of drought. It is based on the two latest versions of AIRS data, Versions 6 and 7, and 

focuses on the case of the 2011 major drought in Texas. In summary, both Version 6 and 

7 are found to capture anomaly locations and time series in the 2011 Texas drought. 

5.2. AIRS Version 7 VPD data 

The latest version of AIRS data available to the public is Version 7. In this version, a 

global, daily VPD product is included as a Level 2 product. This is data that is organized 

according to the satellite swath path at around 45 km horizontal resolution but is not 

gridded. The same equations are used to calculate the VPD as are used in AIRS products 

for USDM (see Section 2). Quality indicators are included for each VPD data point, but 

no comparison to the long-term data record is included and the data are not processed 

to be reported as percentiles as described in Section 4. However, all the data needed to 

create a long-term record for temperature, humidity and VPD is available from 2002 up 

to the present. 

5.3. Data continuity 

The AIRS instrument is expected to cease operations in the near future, but similar 

sounder data will continue to be available from other satellites. The Cross-track Infrared 

Sounder (CrIS) instrument will continue delivering similar capability, also paired with the 

Advanced Technology Microwave Sounder (ATMS). The CrIS and ATMS instruments 
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onboard the Joint Polar Satellite System (JPSS) have yielded global atmospheric 

temperature, pressure and moisture profiles from space since 2011. Drought products 

such as the AIRS products delivered to the USDM are not currently produced from 

CrIS/ATMS data but can be derived with the same principles. 
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